F G192117 Pages:2

Reg No.:	Name:
Keg 110	rame

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019

	Course Code: EC461	
	Course Name: MICROWAVE DEVICES ANDCIRCUITS	
Max. Marks: 100 Duration: 3 H		Hours
	PART A Answer any two full questions, each carries 15 marks.	Marks
1 a)	What are the limitations of conventional solid state devices at microwaves ?	(5)
b)	What does IMPATT diode stands for and with neat diagram explain the	(10)
	construction and working of it and derive power and efficiency of the same. ?	
2 a)	E xplain GaAs MESFET with structure and principle of operation? Why GaAs	(10)
	MESFETs are preferred over Si MESFETs ?	
b)	Discuss different biasing techniques used for microwave bipolar transistor?	(5)
3 a)	Explain one port negative resistance oscillator ?	(5)
b)	a) A typical n-type GaAs GUNN diode has the following parameters (10)	
	Threshold field E_{th} = 2800 V/cm	
	Applied field E $= 3200 \text{ V/cm}$	
	Device length L = $10 \mu m$	
	Doping concentration $n_o = 2*10^{14}/cm^3$	
	Operating frequency = 10 GHz	
	a) Compute the electron drift velocity	
	b) Current density	
	c) Negative electron mobility	
	PART B	

Answer any two full questions, each carries 15 marks.

- 4 a) Find the ABCD matrix coefficient computation of a transmission line section with characteristic impedance ' Z_o ' propagation constant ' β ' and length '1'?
 - b) Discuss the working of quarter wave transformer and halfwave (8)
- 5 a) Explain the working of single stub tuning? (6)
 - b) Discuss in detail about impedance and frequency scaling (9)
- 6 a) List the Kuroda's identity. (5)

F G192117 Pages:2

b) Design a low pass filter for fabricat ion using microstrip line. The specifications (10) are cut-off frequency of 4 GHz, third order, impedance of 50 Ω and a 3 dB equiripple characteristics. The normalized low pass proto-type values are $g_1=3.3487$ = L_1 $g_3=3.3487=L_3$, $g_2=0.7117=C_2$, $g_4=1.000=R_L$.

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Compare Monolithic MICs with hybrid MICs (7)
 - b) Explain stripline in detail. (8)
 - c) The stripline designed with a dielectric material with b = h = 3.1 mm, w = 2.5 mm (5) Find characteristic impedance Z_o ? $\sqrt{\mathcal{E}}_r = \sqrt{10.5}$.
- 8 a) Discuss different configurations of capacitors in MICs. (10)
 - b) Compare short circuit and open circuit resonator. (5)
 - c) Discuss discontinuities in MICs. (5)
- 9 a) Explain the classifications of switches. (7)
 - b) Write notes on 1)Attenuators 2)Slotlines (7)
 - c) Classify the losses in Microstrip lines (6)
